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Abstract

The purpose of the onboard feature indexing system is to
perform pattern recognition and data compression onboard.
We use the unsupervised machine learning algorithm k-
means to classify the lidar profile data and generate an
index dictionary. Then we train the Radial Basis Function
neural network with the index dictionary on ground
computers. Finally, we use the same RBF model for the
onboard feature recognition and indexing.  We implemented
a prototype of the onboard computer with ZISC (Zero
Instruction Set Computing) chips and FPGA (Field
Programmable Gate Array) so that it takes advantage of
intrinsic parallel computing and reconfigurability. We tested
a set of 44K profiles as the training set to learn prototypical
profiles that make up the indexing dictionary. With 64
indices, we reach a high compression rate 99.17% with
reasonable error range. We found the required neurons are
equal to the indices. We also compared our method to
wavelet algorithm and found that it significantly
outperforms the wavelet compression technique.

1. Introduction

The multispectral and imaging systems on a spacecraft
can produce more data than can be analyzed by humans
on Earth. With the growing number of satellites and
improving spatial and spectral resolutions, Earth Science
researchers have to cope with massive data. For example
the down-link rate will be 1 GB per second in 2010 and
up to 10 GB per second by 2020. Much of the data are
redundant and irrelevant to specific purposes. Scientists
spend up to 70% of their time on preprocessing the
imperfect and redundant data. Delays during the analysis
hinder the discovery of disastrous situations or significant
atmospheric features.
     The concept of space-borne data processing systems
has emerged since early 90s. For example, Jet Propulsion
Lab proposed strategies, such as the technologies needed
for dramatic data reduction, autonomous event
recognition and response, hyper-spectral and radar data
onboard processing. [1] A space-borne sensory system
should be able to not only acquire these data, but also to
evaluate them, act upon their scientific content,

summarize their scientific significance and disastrous
situations.
     Our approach is inspired by human perception in daily
life. Humans have natural ADC systems that efficiently
organize information in our memory. Humans are capable
of describing complex things with simple feature
indexing, which can dramatically reduce information. For
example, we often describe a traffic intersection with a
letter ‘T’, or ‘X’. Thus we compress an image (e.g. 1
megabyte) to a letter (e.g. 1 byte).  On the other hand, we
often retrieve information with feature indexing in our
memory. Cognition scientist Herbert Simon and his
colleagues studied this phenomenon and developed a
computer model EPAM (Elementary Perceiver and
Memorizer) [2] to simulate how people learn and
recognize features in words and images.
     The feature indexing method has been used for video
digesting and compression. [3] As the Media Lab Director
Nicholas Negroponte predicted that the new technology
might have enormous impact on our life in future. [4]
     The objective of this study is to develop a prototype of
the image feature indexing system that can be applied to
onboard physical discovery. While we implement the
prototype, we also consider the constraints of onboard
environment, e.g. computing power, weight (bit per gram)
and reconfigurability.
     In this paper, we focus on satellite lidar data only
because the data stream is relatively small to begin with
and the data directly contribute to disastrous aviation
weather detection. Lidar (which stands for light detection
and ranging), like radar, is an active remote sensing
technique. It involves the use of pulses of laser light
directed from space toward the ground, measuring the
time of pulse return. The return time for each pulse back
to the sensor is processed to calculate the variable
distances between the sensor and the various objects
present above (or on) the ground. The algorithm
developed can be transformed to other earth observatory
systems, such as hyperspectral image, SAR, etc. Fig.1
shows an example of the lidar profile image. In this
image, each vertical line is a profile. Each pixel represents
the reflectance value. Similar to a fingerprint, the spectral
data and lidar/radar data of each imager pixel or
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lidar/radar profile from earth observations can be divided
into hundreds to millions of classes, depending on the
complexity of the data. Each class of target has its unique
spectral and spatial characteristics. Each class can be
labeled with a simple integer index. Instead of sending
down detailed spectral data and vertical profiles, each of
which might be in the order of megabytes and may appear
thousands of times during a satellite mission, we only
down-link the integer index. The detailed spectral data
and vertical profiles, if needed, can be easily looked up in
a standard library with the down-link index. We call this
approach “Feature Indexing”.

Fig.1 Sample of Lidar Profile Image

Feature indexing is different from “general-purposes”
data compression methods, such as wavelet, or MP3
algorithms. Since it is based on scientific knowledge. For
a satellite instrument, the number of types of
distinguishable atmospheric features is limited. The
spectral and spatial information of each type of feature
can be characterized. Earth Science sensors repeatedly
detect each feature many times during a satellite mission.
The feature indexing technique effectively eliminates the
redundancy of same spectral and spatial information.
     We assume that each lidar image has highly repeatable
and limited number of classes. Taking two days worth of
space shuttle lidar (LITE) data for example, we found
limited amount of physical property characterizations. It
contains around 120,000 different lidar shots, 65% of
lidar profiles have either no objects at all or only have one
layer of cloud or aerosol object. 97% of lidar profiles
have three layers of objects or less. In light of this
property, we can use clustering methods to group
atmospheric features into limited number of classes on the
ground.
     In this paper, we present the system architecture, the
machine learning algorithms, hardware realization, and

benchmarking for the performance of our approach
against wavelet algorithm.

2. System Architecture

Feature indexing requires an index generator and index
recognizer. The index generator classifies features into
limited number of indices. The index recognizer retrieves
indices according to features in the image. In our case, we
assume that the onboard computer has very limited
computing power so that we do feature classification on
the ground computer which has significant computing
power. We only use the onboard computer to do the
indexing or feature recognition, which needs less
computing power.

Fig. 2  The Machine Learning Scheme

Unsupervised learning algorithm is used because it is hard
to train the pattern classification manually with enormous
lidar data samples. The output of the classification
process, k-means, is an ‘index dictionary,’ which is used
to train the recognition model on a simulator with a
ground computer. Then the trained recognition model is
loaded to an onboard computer. The advantage of this
approach is that the two can share the same configuration
file so that the onboard model can be updated from the
Earth by transferring the configuration file. Once the
onboard system recognizes a lidar profile, it will output a
feature index for it and pass it to the Earth.

The set of 44K profiles serves as the training set to learn a
set of prototypical profiles that make up the indexing
dictionary. We use the common k-means clustering
technique, a generative method that assumes that the
complete training set is generated from a set of k-
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distributions. Its goal is to find the means of these
distributions (in the 3000 feature space, this corresponds
to k prototypical profiles) to maximize inter distribution
similarity (distance between elements said to have been
generated from a given prototype) and minimize cross
cluster similarity. The algorithm consists of a re-
estimation procedure as follows. First, the data points (the
profiles) are assigned at random to the K sets. Then the
centroid (average profile) is computed for each set. These
two steps are alternated until a stopping criterion is met,
i.e., when there is no further change in the assignment of
the data points, minimizing the sum of squares criterion
below where K is the number of clusters, Sj defines a
current profile cluster, and x is the 3000 feature profile.

Creating the dictionary profiles constitutes the training
step within our technique. Each of these profiles is used to
initialize a Neural Network that can perform the
recognition step of associating a new profile to one of
these dictionary profiles. The Neural Network model uses
Radial Basis Functions [5] that measure the similarity of a
new profile to the set of existing prototype clusters. While
the feature classification is processed on Earth, the feature
recognition model is implemented onboard. We use
Radial Basis Function (RBF), which is similar to the
feature classification model, for feature recognition. The
RBF neural network is a three layer network where each
input node, corresponding to the component of a feature
vector is connected to every node of the second layer
(hidden layer), each node of the hidden layer is connected
to one output node which corresponds to an index. Fig. 4
shows the network structure.

Fig.4 The RBF Network

3. Hardware Implementation

To solve the down-link bottleneck problems, we have to
implement the feature indexing system on an onboard
computer.  ZISC78 (Zero Instruction Set Computing) chip

from Silicon Recognition  is used to implement the RBF
(Radial Basis Function) algorithm. Each chip has 78
neurons. It is not limited in volume due to its parallel
architecture. In this study, two ZISC78 chips are used for
the rapid prototype.
     To make the onboard computer reconfigurable, Field
Programmable Gate Array (FPGA) systems are used in
this design. The FPGA chip SPARTAN II from Xilinx
contains 50K gates. The hardware scheme is illustrated as
Fig.4.

Fig. 5  Hardware for Onboard Recognition

The prototype system has limited capacity. Each data
instance has up to 64 features, where each parameter can
take values between 0 and 255. These limitations are
inherent in the chip design.

4. Experiment Results

We tested a set of 44K profiles as the training set to learn
prototypical profiles that make up the indexing dictionary.
Considering each profile as a 3000 element feature vector,
we cluster this data with k-means model to have 64
feature indices. Then we train the recognition model
(RBF) on a simulator that has far larger capacity. Finally,
we load the learned RBF configuration file to the onboard
computer for recognition tests. On the ground computer,
the profile set is reconstructed by selecting the dictionary
profile that corresponds to the index received from the
satellite. Since the prototype represents the closest profile
to the unseen profile, an inherent loss occurs. Each
reflectance value in the recovered image is compared to
its original reflectance value. The difference between
these values is squared and averaged over each profile for
the measurement of loss due to the indexing operation.
Also, the compression ratio is defined as the percentage of
size reduction.
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      We use two ZICS78 chips for index recognition. After
loading the base classes onboard, we measured that it took
about 0.078 seconds to recognize each profile.

Table 1 Indexing Performance
Index Error Rate Comp.  Ratio Neuron

16 0.031082 99.95% 16
32 0.029709 99.68% 32
64 0.028133 99.17% 64

Table 1 shows the performance of the indexing test at
different resolutions. In general, the data compression
ratio, which is defined as the percentage of data reduction,
is as high as 99.95%. Increasing number of indices
reduces compression ratio in a very subtle level. On the
other hand, as the number of indices increases, the error
rate, which is defined as the distance of the reflectance
values between original and recovered per point in
average, decreases. In addition, we found that the neurons
required for recognition is proportional to indices. In this
case, it is in 1:1 ratio.
       We compare our approach to wavelet compression, a
popular lossy data compression algorithm. The wavelet
compression is achieved through the use of Discrete
Wavelet Transform (DWT). It is an orthogonal transform
with a basis function that's localized both in time and
space. Through it's application a wavelet coefficient
matrix is produced. Depending on how much energy
(roughly - the amount of variance in the data) we want to
preserve, we can keep applying this matrix to the trimmed
data matrix "smoothing" it every time. Note that the more
we trim and reapply the DWT coefficients to the data, the
smoother our data will be and more and more details will
be lost. Table 2 shows that our approach has a better
compression ratio at any given error rate.

Table 2 Wavelet Performance
Energy

Retained
Error Rate Comp.

Ratio
91.66% 0.1262 94%
99.00% 0.0392 75%
99.86% 0.0166 50%

5. Conclusions

In this paper, a design prototype of the onboard feature
indexing system is presented. The purpose of the system
is to perform pattern recognition and data compression
onboard. Instead of transmitting raw data from sensors to
Earth, the onboard system recognizes the physical
features from multiple sensors and then sends the feature
indices or alerts to the Earth. On the ground, the profile
data can be recovered for aviation alerts or further

atmospheric studies. Although we focus on the lidar
sensor in this project, the technology can be extended to
other sensors.
     We use the unsupervised machine learning algorithm,
k-means, to classify the lidar profile data and generate an
index dictionary. Then we train the Radial Basis Function
neural network with the dictionary on ground computers.
Finally, we use the same RBF model for the onboard
feature recognition and indexing.
    We implemented a prototype of the onboard computer
with ZISC (Zero Instruction Set Computing) chips and
FPGA (Field Programmable Gate Array) so that it takes
advantage of intrinsic parallel computing and
reconfigurability.
    The NASA LITE data are used for experiments. We
tested a set of 44K profiles as the training set to learn
prototypical profiles that make up the indexing dictionary.
With 64 indices, we reach a high compression rate
99.17% with reasonable error range. We found the
required neurons are equal to the indices. We compared
our method to a popular lossy data compression
algorithm, wavelet and found that it significantly
outperforms the wavelet compression technique.
     However, the speed of the prototype board has not
been fast enough: 0.078 seconds for indexing one profile.
We haven’t fully tested the reconfigurability of the FPGA
unit yet.
      We are encouraged from this preliminary experiment.
It is a trend that hardware and software for ADC and
image processing will merge into so called
configureware, which can significantly help the onboard
inverse physics and discovery.
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